科学札记

Ne 原子 509~475 nm 波段的光电流光谱

Abstract: We have observed laser optogalvanic spectroscopy of neon in hollow cathode lamp using Nd:YAG laser frequarcy-tripled output to pump LD490 dye laser and calibrated 53 spectral lines in the range of 509-475 nm.

一、实验装置与方法

图1是实验装置的示意图。 光源是 Nd:YAG 三倍频泵浦的染料激光器,使用 LD490 染料,可调 范围 510~475 nm,脉冲能量为 0.3 mJ,脉冲宽度 15 ns,输出线宽 0.01 nm。空心阴极灯为上海电光 器件厂出产的 KY 型空心阴极灯,光电流.信号经 0.02 µF 的电容耦合至 Boxcar 积分器(M162 和 M165)或示波器中,Boxcar 积分器的输出接 *x-y* 记 录仪

我们在示波器上对 509~475 nm 波段内 Pr-Ne、Nd-Ne 二种空心阴极灯的谱线进行了观测,共 得到 58条两种灯共有的谱线,其信号宽度一般在 μs 量级。图 2 是用 Boxcar 积分器记录的 505~500 nm 波段光电流光谱。

图 2 用 Boxcar 积分器记录的 505~500 nm, (光电流光谱,图中波长单位为 Å) 为了提高信噪比,除采取屏蔽措施外,我们对实验中使用的国产 YJ32-2 型晶体管直流稳压电源输出附加了 RC-II 型滤波电路,收到了良好效果。

二、结果与讨论

1. 谱线的标定

我们对实验中得到的 509~475 nm (19646.4~ 21097.0 cm⁻¹) 波段 58 条 Pr-Ne 及 Nd-Ne 空心 阴极灯的公共谱线进行了标定。可以推测其中绝大 部分应为工作气体 Ne 的光电流谱线。在这 58 条 谱线中,已经包括了美国国家标准局 (NBS)1980 年 12月出版的波长表中 7 条谱线(表(1)中*号所示)。 每条谱线的波长是直接由染料激光器的波长鼓读出 的,其精度为 ±0.05 nm。我们用 NBS 能位表对所 有的谱线进行了识别。因为 $1S_5$ - $2P_1$ 的间距16996.6 cm⁻¹ 以及 $2S_5$ 到电离限的距离 15328.6 cm⁻¹ 小于 19646.4 cm⁻¹; 而 $1S_5$ - $3P_{10}$ 的间距 28476.1 又大于 21097.0 cm⁻¹,所以在激光调谐范围内所有 Ne 原子 跃迁只能起源于 $2P_4$ 能级。考虑了空气中的波长修 正后,实测波长 λ 和根据 NBS 能位表计算的波长 λ' 以及相应的跃迁一并列入表 1。

2. 时间波形的讨论

图 3 是用 Boxcar 积分器记录的 Ne 原子 503.82 nm 谱线的时间波形,由于 2P,属于非亚稳态,所以 是负的光电流信号。此外由于谱线中最低跃迁上能 级 $4S_5$ 的激发能量为 20.9 eV,大于 Ne⁺ 分子离子的 电离能 20.3 eV⁽¹⁾,而 2P,能级中最高的 2P₁ 能级的 能量只有 19.0 eV 小于 20.3 eV,因此,由于光激发 原子由 2P 能级跃迁至 $4S_5$ 以上的能级后,将使缔合 离化截面增加,即

 $Ne^* + Ne \longrightarrow Ne_2^+ + e$

这也导至负光电流信号。

3. 非共振信号的影响

当激光直接照射到阴极表面时,在一定条件下,

$\lambda(nm)$	$\lambda'(nm)$	相 应 跃 迁 (用 J-L耦合符号标记)	光电流信号 强度 (mV)	λ (nm)	$\lambda'(nm)$	相 应 跃 迁 (用 <i>J-L</i> 耦合符号标记)	光电流信号 强度 (mV)
508.27	508.28	$3p' \left[1 \frac{1}{2} \right]_2 - 7s \left[1 \frac{1}{2} \right]_2$	15	494.05	494.04	$3p\left[1\frac{1}{2}\right]_2 - 7s\left[1\frac{1}{2}\right]_1$	40
508.21	508.18	$3p\left[2\frac{1}{2}\right]_2 - 5d\left[3\frac{1}{2}\right]_3$	100	492.96	492.96	$3p'\left[\frac{1}{2}\right]_1 - 7s'\left[\frac{1}{2}\right]_1$	25
508.07	508.02	$3p\left[2\frac{1}{2}\right]_2 - 5d\left[1\frac{1}{2}\right]_2$	20	489.90	489.93	$3p\left[1\frac{1}{2}\right]_1 - 7s\left[1\frac{1}{2}\right]_2$	30
507.84	507.80	$3p\left[2\frac{1}{2}\right]_2$ $-5d\left[1\frac{1}{2}\right]_1$	40	489.32	489.34	$3p\left[1\frac{1}{2}\right] -7s\left[1\frac{1}{2}\right]$	50
507.61	507.65	$3p'\left[1\frac{1}{2}\right]_2 - 7s\left[1\frac{1}{2}\right]_1$	80	488.60	*488.626	$3p'\left[1\frac{1}{2}\right]_{2}$ $-7s'\left[\frac{1}{2}\right]_{1}$	130
505.47	505.43	$3p'\left[1\frac{1}{2}\right]_1 - 7s\left[1\frac{1}{2}\right]_1$	20	486.93	486.96	$3p\left[1\frac{1}{2}\right]_2 - 6d\left[\frac{1}{2}\right]_1$	40
504.83	504.80	$3p'\left[\frac{1}{2}\right]_1 - 6d\left[\frac{1}{2}\right]_0$	30	486.80	486.78	$3p\left[1\frac{1}{2}\right]_2 - 6d\left[3\frac{1}{2}\right]_3$	30
504.76	504.72	$3p'\left[\frac{1}{2}\right]_1 - 6d\left[\frac{1}{2}\right]_1$	15	486.74	15M 3.7		80
504.46	504.43	$3p'\left[\frac{1}{2}\right]_1 - 6d\left[1\frac{1}{2}\right]_2$	30	486.64	486.69	$3p\left[1\frac{1}{2}\right]_2 - 6d\left[1\frac{1}{2}\right]_2$	80
5 04.19	504.17	$3p'\left[\frac{1}{2}\right]_1 - 6d\left[2\frac{1}{2}\right]_2$	10	486.53	486.57	$3p\left[1\frac{1}{2}\right]_{2} - 6d\left[1\frac{1}{2}\right]_{1}$	40
503.96	*503.914	$3p\left[2\frac{1}{2}\right]_{3}$ $-5d\left[3\frac{1}{2}\right]_{4}$	150	486.40	486.44	$3p\left[1\frac{1}{2}\right]_2 - 6d\left[2\frac{1}{2}\right]_3$	100
503.77	503.74	$3p\left[2\frac{1}{2}\right]_{3}$ $-5d\left[1\frac{1}{2}\right]_{2}$	80	485.37	485.35	$3p'\left[\frac{1}{2}\right]_1 - 6d'\left[2\frac{1}{2}\right]_2$	40
503.59	503.56	$3p'\left[\frac{1}{2}\right]_{0}$ $-10d\left[1\frac{1}{2}\right]_{1}$	10	485.25			30
503.31	503.29	$3p\left[2\frac{1}{2}\right]_2 - 5d\left[2\frac{1}{2}\right]_2$	100	484.39	484.39	$3p'\left[\frac{1}{2}\right]_1 - 7d\left[1\frac{1}{2}\right]_1$	30
502.46	502.43	$3p\left[2\frac{1}{2}\right]_2 - 6s'\left[\frac{1}{2}\right]_1$	30'	483.82	483.87	$3p\left[\frac{1}{2}\right]_1 - 6s\left[1\frac{1}{2}\right]_2$	100
501.71	501.66	$3p\left[\frac{1}{2}\right]_{0}-6d\left[\frac{1}{2}\right]_{1}$	10	482.83	*482.868	$3p\left[\frac{1}{2}\right]_1 - 6s\left[1\frac{1}{2}\right]_1$	70
501.26	501.24	$3p\left[\frac{1}{2}\right]_{0} - 6d\left[1\frac{1}{2}\right]_{1}$	20	482.40	482.39	$3p\left[1\frac{1}{2}\right] - 6d\left[\frac{1}{2}\right]_1$	30
501.10			10	482.27			80
500.68	*500.655	$3p\left[1\frac{1}{2}\right]_2 - 5d'\left[2\frac{1}{2}\right]_3$	80	482.06	482.01	$3p\left[1\frac{1}{2}\right]_1 - 6d\left[1\frac{1}{2}\right]_1$	20
500.21	500.18	$3p' \left[1 \frac{1}{2} \right]_2 - 6d \left[\frac{1}{2} \right]_1$	15	481.95	481.90	$3p\left[1\frac{1}{2}\right]_1 - 6d\left[2\frac{1}{2}\right]_2$	50
500.02	499.99	$3p' \left[1 \frac{1}{2} \right]_2 - 6d \left[3 \frac{1}{2} \right]_3$	15	481.85	481.82	$3p\left[\frac{1}{2}\right]_{0}$ $-7d\left[\frac{1}{2}\right]_{1}$	50
499.91	499.89	$3p' \left[1 \frac{1}{2} \right]_2 - 6d \left[1 \frac{1}{2} \right]_2$	15	481.15	481.15	$3p'\left[1\frac{1}{2}\right]_2 - 6d'\left[2\frac{1}{2}\right]_2$	40
499.66	499.64	$3p'\left[1\frac{1}{2}\right]_2 - 6d\left[2\frac{1}{2}\right]_2$	50	481.10	481.08	$3p'\left[1\frac{1}{2}\right]_2$ -6d' $\left[1\frac{1}{2}\right]_1$	60
497.76	497.74	$3p'\left[1\frac{1}{2}\right]_1 - 6d\left[1\frac{1}{2}\right]_2$	10	480.08	480.07	$3p'\left[\frac{1}{2}\right]_{0}$ -11 $d'\left[1\frac{1}{2}\right]_{1}$	40
497.64	497.61	$3p'\left[1\frac{1}{2}\right]_1 - 6d\left[1\frac{1}{2}\right]_1$	30	479.10	*479.156	$3p'\left[1\frac{1}{2}\right]_1 - 6d'\left[2\frac{1}{2}\right]_2$	120
497.52	497.49	$3p'\left[1\frac{1}{2}\right]_1 - 6d\left[2\frac{1}{2}\right]_2$	30	478.97	*479.027	$3p\left[2\frac{1}{2}\right]_{3}$ $-7s\left[1\frac{1}{2}\right]_{2}$	15
495.86	495.85	$3p\left[1\frac{1}{2}\right]_1$ -5d' $\left[1\frac{1}{2}\right]_2$	60	478.12	478.17	$3p' \left[1 \frac{1}{2} \right]_1 - 7d \left[2 \frac{1}{2} \right]_2$	30
495.68	495.03	$3p\left[1\frac{1}{2}\right]_1$ -5d' $\left[1\frac{1}{2}\right]_1$	40	477.87			20
494.64	494.64	$3p\left[1\frac{1}{2}\right]_2$ -7 s $\left[1\frac{1}{2}\right]_2$	60	475.32	*475.407	$3p\left[2\frac{1}{2}\right]_2 - 6d\left[3\frac{1}{2}\right]_3$	20

表 1

图 3 503.82 nm 谱线的时间波形

金属阴极中的电子将吸收光子的 能量 脱出 阴极表面,使放电电流增加,产生所谓非共振光电流效应 (区别于原子能级间共振吸收引起的光电流信号)。 这种现象在短波波段尤其明显,甚至与共振的光电 流信号一个数量级。峰值位置也几乎与共振信号重 合,以致用 Boxcar 积分器的取样门很难将二者分 开。所以图 2 仅仅给出了 λ>500 nm 波段的谱线。 对于 λ < 500 nm 波段,由于非共振背景噪声明显变 大,我们给出的是用示波器观测的结果。

当 λ =500 nm 时,光子具有的能量为 2.48 ev, 与已知的 Pr 元素脱出功 2.7 eV^[4]相比要小0.2eV, 但由于空心阴极灯阴极表面温度一般在 5000 K 左 右^[3],而 0.2 eV/5000 K~10⁻⁶ eV/K,与金属脱出 功随温度的变化规律 $d\phi_m/dT = 10^{-5} \sim 10^{-6} eV/K^{[2]}$ 是一致的。为了减少非共振信号对短波波段光电流 检测的干扰,我们认为一个根本的途径就是改变空 心阴极灯的阴极结构,'避免激光直接照射阴极表面。

参考文献

- [1] H. U. Mittmann, H. P. Weise; Z. Naturfosch., 1974, 29a, 400.
- [2] 清华大学,华南工学院,"阴极电子学与气体放电原 理"。
- [3] Norman J. Dovid et al.; Appl. Opt., 1982, 21, 1468.
- [4] 中山大学金属系;《稀土物物化学常数》,冶金工业出版社 1978 年 11 月。
- (吉林大学物理系 王 薇 蒋占魁 骆兴业 1985年4月5日收稿)

低阈值红外受激超喇曼调谐装置

Abstract: A design using output from a bifrequency, colinear dye laser pumped by shortpulse xenon fiash lamp is presented. The stimulated hyper-Raman radiation of near and middle IR may be generated by simultaneous single-double photon resonance enhencement. It has the features of low threshold, wider tunable range and low cost.

金属蒸气受激超喇曼散射(SHRS)过程的 Stokes 增益由下式决定^[1]:

$$G_{HR} \propto \frac{I_{p_1}I_{p_2}r_{j_1}^2r_{i_j}^2r_{j_j}^2}{(\Omega_{ig} - \omega_{p_1} - \omega_{n_2})^2(\Omega_{jg} - \omega_{p_1})^2}$$

如能使泵浦光频率 ω_{p1} 、 ω_{p_1} 分别连续可调, 以同时 实现单光子和双光子共振增强,则有可能获得极低 的泵浦阈值。 但是,在已发表的 SHRS 文章中,还 只是利用单一频率的泵浦光(使 $\omega_{p_1} = \omega_{p_2}$)的实验结 果。

我们这里提出一种设计方案,利用商品短脉冲 氙灯(脉宽微秒级,功率 10 MW 以上)作为双频调谐 激光器的泵浦源,用二种染料(若丹明 6G 和尼尔 兰),三种金属蒸气(Na、K、Rb),可望在 2~5 μm 频 段实现红外 SHRS 调谐输出。其特点是装置特别 简单,无需两套独立的调谐系统,同时能实现极低的 泵浦阈值。

该装置如图所示。 左边是双频共线输出的可调 谐激光器。 通过横向移动染料盒,改变输出光强 I₂₁、I₂₅的比例;频率调谐由转动光栅 G1、G2 来实 现。该装置是 Chandra 首先提出的^[2]。他采用氮激 光泵浦,我们改用短脉冲氙灯,后者有宽的光谱范围 和足够高的脉冲功率。装置的右边部份是典型的 SERS 和 SHRS 系统^[3]。

实验装置图